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Abstract: Artificial Neural Networks {ANNSs) of the back-propagation type are a useful tool for medelling environmental
systems. They have already been successfully used to predict salinity, nutrient concentrations and incidences of blue-green
algae. These successes, coupled with their suitability for modelling complex systems, have resulted in an increase in their
popuilarity and their application in an ever increasing number of areas. They are generally treated as black box models that are
able to capture underiying relationships when presented with input and output data. In many instances, little consideration is
given to potential input data and the internal workings of ANNs. This can result in inferior model performance and an
inability to accurately compare the performance of different ANN models. Back-propagation networks employ a modelling
philosophy that is similar to that of statistical methods in the sense that unknown model parameters (i.e. connection weights)
are adjusted in order to obtain the best match between a historical set of mode! inputs and corresponding outputs.
Consequently, the principles that are considered good practice in the development of statistical models should be considered.
In this paper, a systematic zpproach to the development of ANN based forecasting models is presented, which is intended to
act as a guide for potential and current users of back-propagation networks. Issues that need to be considered in the model
development phase are discussed and ways of addressing them presented. The major areas covered include data
transformation, the determination of appropriate model inputs, the determination of an appropriate network geometry, the

optimisation of connection weights and validation of model performance.

L INTROBUCTION

In recent vears, Artificial Neural Networks (ANNs) have
become =2 popular and useful tool for medelling
environmental systems. They have already been
sugcessiully used to simulate the export of nutrients from
river basins [Clair and Ehrman, 1996], to forecast salinity
[DeSilets et al, 1992], to predict incidences of blue-green
zlgae [Maier and Dandy, 19973}, and are being considered
for a variety of other applications. Many environmental
modetlers are “experimenting” with ANNs on datasets for
which the use of more conventional techniques (eg
regression) has been unsuccessful. However, a large
proportion of users are not “experts” in the use of ANNs
and tend 1o treat them as a2 “black box”. Data pre-
processing, methods for determining adequate model inputs
and the internal workings of ANNs are seldom considered
in the model building process. This can result in inferior
model performance and an inability to accuralely compare
the performance of different ANN models.

In this paper, guidelines for developing ANN forecasting
models are presented to assist current and potential users of
back-propagation neural networks. The concepts presented
are illustrated with fwo case studies: the forgcasting of
salipity in the River Murray at Murray Bridge, South
Australia, t4 days in advance [Maier and Dandy, 1996a,
1997¢] and the forecasting of incidences of a species group
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of the cyanobacteriom Anabaena spp. in the River Murray
at Morgan [Maier and Dandy, 1997b] four weeks in
advance.

2. ANNS: A MODELLING TOOL

AMNNs provide a means of computation inspired by the
structure and operation of the brain and central nervous
system. They operate as a parailel computer, which
consists of a number of processing elements (PEs) that are
interconnected. Typically, the PEs are arranged in layers;
an input layer, one or more hidden layers and an output
layer {Figure 1). The input from each PE in the previous
tayer (%))} is multiplied by a connection weight (wy). These
connection weights are adjustable and may be likened to the
coefficients in statistical models. At each PE, the weighted
input signals are summed and a threshold value (3) is
added. This combined input {1, is then passed through a
nop-linear transfer function (f.)) to produce the output of
the PE {y). The output of one PE provides the input to the
PEs in the next layer. This process is summarised in {1)
and (2} and iHustrated in Figure 1.
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Figure 1: Operation of 2 Typical Artificial Neural Network

ANNs are well suited to environmental modelling as they
are non-linear [Chakraborty et al, 1992}, relatively
insensitive to data noise [Tang et al, 1991] and perform
reasonably well when limited data are available [Tang et
al,, 1991]. When ANNs are used for the prediction of
environmental variables, the modelling philosophy
employed is similar to that used in the development of more
conventional statistical models, In both cases, the purpose
of the model is to capiure the relationship between a
historical set of model mpuis and corresponding outputs.
This is achieved by repeatedly presenting examples of the
input / output refationship to the model and adjusting the
model coefficients {i.e. the connection weights) in an
attemnpt to minimise an error function between the
historical outputs and the outputs predicted by the model.

3. THE MODEL DEVELOPMENT PROCESS

As discussed in Section 2, the medelling philesophy used to
develop ANN and conventional statistical models is similar.
Consequently, the principles that are considered good
practice in the development of statistical models should be
given careful consideration. The major areas that should be
considered include data transformation, the choice of
adequate model inputs, the choice of an appropriate
network geometry, parameter estimation and model
validation.

3.1 Data Transformation

In any model development process, familiarity with the
available data is of the upmost importance. Issues in
relation to the statistical distribution of the input data, and
the effects of trends, seasonal  variation and
heteroscedasticity are of major importance when more
traditionai statistical techniques are being considered.
However, they are generally considered less important in
the development of ANN models,

A normally distributed data set is a prerequisite when
traditional regression or ARMA (AutoRegressive Moving
Average} type models are being developed. This is a severe
restriction when modelling environmental data, as they are
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often not normally distributed, and their nature is such that
it 15 extremely difficult, if not impossible, to find suitable
transformations to normality. It is suggested m the
literature (e.g. Burke and lgnizio [1992]) that ANNs
overcome this problem, as the probability distribution of the
input data does not have to be known. However, this issue
needs to be investigated more fully.

Another requirement when developing time series models
of the ARMA type is that the input dala have to be
stationary. The effect of stationary and non-stationary
input data on ANN models was investigated by Maier and
Dandy [1996b]. Their findings indicate that ANNs have
the ability to cater for non-stationarities in time series data
with the aid of their hidden laver nodes. The data used in
the study exhibited irregular seasonal variation, but did not
contain any trends or heteroscedasticity. Consequenily, the
ability of ANNs to deal with trends and heteroscedasticity
in the data needs further investigation.

The data used for the salinity case study included daily
salinities at Murray Bridge and the wupstream sites of
Mannum, Morgan, Waikerie and Loxton as well as daily
flow at Lock 1 Lower (approx. 100 km upstream of Murray
Bridge). All data were available from 1987 10 1991,

The data used for the blue-preen algae case study included
weekly values of turbidty, colour, tempersture, total
phosphorus, soluble phosphorus, oxidised nitrogen and total
iron at Morgan as well as weekly flows at Lock 7 (approx.
150 km upstream of Morgan). All data were available from
1983/84 10 1992/93.

The time series used in both case studies exhibited non-
regular seasonal variations and were non-normally
distributed, However, they did not contain any trends or
heteroscedasticity. Consequently, it was not considered
necessary {0 transform the data.

3.2 Betermination of Model Inputs
In this step, it has to be decided which input variables (z,,

Z2, ...y Zy) f0 include in the model, as well as which iags
(8.8 Zir1) Zj 123 --os Ziws =1, 2. ..., 1) 10 use for each of



these.

Cheice of Yariables:

The choice of input variables is generally based on a priord
knowledge of causal wvariables in conjunction with
inspections of time series plots of potential inputs and
outputs.  If the relationship to be modelied is less well
understood, cross-correlation analysis can be used. In the
salinity case study, analytical methods for determining
appropriate input variables were deemed unnecessary, as
the underlying processes (ie salt transport and saline
groundwater accessions) are weli understood. The input
variables chosen include salinities at Murray Bridge,
Mannum, Morgan, Waikerie, Loxton and flow at Lock |
Lower.

The mechanisms responsible for incidences of blue-green
algae, on the other hand, are not well understood.
Consequently, various input variables were fried. Al
available variables {i.e. turbidity, colour, temperature, flow,
total phosphorus, soluble phosphorus, oxidised nitrogen and
totat fron) were considered as potential input variables.
tnitially, eight models were developed, each using only one
of the available input varisbles. Subsequently, seven
modsls were developed, combining the variable that
resulted in the best forecast when only one input variable
was used with each of the remaining variables. This
procedure was repeated using models with three input
variables, four input variables etc., until the addition of any
extra variables did not improve model performance. This
process resulted in the inclusion of flow, temperature and
colour inputs.

Choice of Lags:

in the development of conventional time series models,
analytical procedures are generally used to determine which
lagged inputs fo include from cach variable. This is done
by evaluating the strength of the relationship between the
output time series and the potential input time series ai
various lags. The lags of the input time series which have a
significant influence on the output time series are then
selected as model inpuis. Most analytical approaches are
based on the method of Haugh and Box [19771, which uses
cross-correlation analysis.

Analytical approaches are generally not used to determine
the inputs for multivariate ANN models. The main reason
for this is that AMNNs belong to the class of data driven
approaches, whereas conventional statistical methods are
model driven {Chakraborty ¢t al., 19921 In model driven
approaches, the structure of the model has to be determined
first, which is done with the aid of the analytical approach
mentioned above, before the unknown model parameters
can be estimated. Data driven approaches, on the other
hand. have the ability to determine which model inputs are
critical, so there is no need for a priori rationalisation about
relationships between variables,

However. presenting a large number of inputs o ANN
madels, and relving on the network to determine the critical
model inputs, usually increases network size. This has a
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aumber of disadvantages, such as increasing training time,
increasing the amount of data required to efficiently
estimate the connection weights and increasing the number
of local minima in the error surface. This is particularly
true for complex problems, where the number of potential
inputs is large, and where no @ priori knowledge is
available to suggest possible lags at which strong
relationships exist between the output time series and the
input time series,

Consequently, there are distinct advantages in using an
analytical technique to help determine which lags of the
input variables should be inciuded in multivariate ANN
models. Maier and Dandy [1957¢] have evaluated the
neural network based approach for the above. They found
that both methods were suitable, although the neural
network based approach was preferred, as it was quicker
and simpler to use.

The neural network based method involves the development
of n bi-variate ANN models, one for each of the input
variables chosen. Each meodel relates lagged inputs (i.e. at
times t-1, -2, ..., t-N) from one of the input variables to the
output variable. The value of N is chosen so that the lags of
the input time series that excesd N are not suspected to
have any significant effect on the output time series. The
strength of the relationship between the output variable and
cach of the input variables at the different lags is then
determined with the aid of sensitivity analyses. As pari of
the sensitivity analyses, each of the inputs s increased by a
certain percentage {e.g. 5%) in turn, and the change in the
output caused by the change in the input is calculated. The
sensitivity of each input is given by

% change in output
% change in input

x 100 3

Sensitivity =

Plots of the sensitivities at various lags are then inspected
to decide which lags should be included. No fixed level is
used to distinguish between significant and non-significant
inputs. Instead, the sensitivities are used as a guide to
decide which inputs should be chosen by applying some
degree of judgement.

For the salinity case study, six bi-variate models were
developed, one for each of the six input variables. The
output variable was salinity at Murray Bridge at time t+13
{i.e. 14 days in advance) in each case. The model inputs
chosen using the above procedure are shown in Table 1. A
typical plot of sensitivities is shown in Figure 2. As can be
seen from Table I, inputs at lags | to 7 were selected based
on the sensitivities shown in Figure 2.

For the blue-green algae case study, eight bi-variate models
were developed, one for each of the eight input variables.
The output variable was concentrations of 4nabaena spp. at
time t+3 (i.e. 4 weeks in advance) in each case. The lags of
cach of the potential input variables that were found to have
a significant effect on concentrations of Anabaena spp. are
shown in Table 2. It should be noted that these lagged
inputs were used in the process for determining appropriate
input variables described above.



Table 1: Input Lags Chosen for the Salinity Case Study

Variable Location Lags of Inputs  Total
(days) No.
Salinity =~ Murray Bridge 1,2 2
Salinity Mannum 1,2 2
Salinity Morgan 1,2 2
Salinity Waikerie 1,2,..4 4
Salinity Loxton 1,2, ..,7 7
Flow Lock | Lower 1,2,..,8 8

Sensitivity

Lag of inputs

Figure 2: Typical Sensitivities of Salinity Inputs from
Loxton

Table Z: Input Lags Chosen for the Blue-Green Algae

Case Study

Vartable Lags of inputs  Total

(days} No.
Turbidity 1,2,..8 8
Colour i,2,..4 4
Temperaturs i 1
Flow 1,2, .,15 15
Tot. Phosphorus 1,2 2
Sol. Phosphorus 1,2,..5 5
Oxidised Nitrogen 1,2,..7 7
Tot. fron t,2,..,21 21

3.3 Choice of Network Geometry

Network geometry is generally defined by the number of
hidden layer nodes and the number of nodes in each of
these layers. It determines the number of model parameters
that need to be estimated. [f there is an insufficient number
of parameters, it may be difficult to obiain convergence
during training, as the network may be unable to obtain an
adequate fit to the training data. On the other hand, if too
many parameters are used in relation to the number of
available training samples, the network may lose its ability
to generalise.  In addition, keeping the number of
parameters to a minimun reduces the computational time
needed for training.

In most instances, the use of one hidden layer is sufficient.
In fact, it has been shown that ANNs with one hidden layer
can approximate any continuous function [Cybenko, 19891
The optimum number of hidden layer nodes is generally
found using a trial and error approach. However, there are
some general guidelines which may be followed. Hecht-
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Nielsen [1987} suggests the following upper limit for the
number of hidden layer nodes in order to ensure that ANNs
are able to approximate any continuous function:

N < 2N+ )
where
N = number of hidden layer nodes

N' = number of inputs

However, In order to ensure that the networks do not overfit
the traiming data, the relationship between the number of
training samples and network size also needs to be
considered. Rogers and Dowla [1994] recommend the
following upper limit for the number of hidden layer nodes
to satisfy the above criteria:

M NN (5)

where
N™ = gumber of training samples

Consequently, the upper Hmit for the number of hidden
laver nodes may be taken as the smaller of the values for nNH
obtained using {(4) and (5). However, in many instances,
good performance can be obtained with fewer numbers of
nodes.

In the blue-green algae case study, the above guidelines
were used to determine network geometries for all models
developed. The peometry of the final model selected (e
the model using flow, temperature and colour data as
inputs) was 20-17-1 (number of inputs ~ number of hidden
nodes - number of outputs). The effect of using 5, 10, 23,
30 and 35 hidden layer nodes was also investigated. The
different geometries wers found to have negligible impact
on model performance.  The same was found for the
salinity case study, where three different geometries were
trialed (25-5-1, 25-15-1 and 25-30-1).

3.4 Parameter Estimation

In the parameter estimation, or “training”, phase, the

connection weights are adjusted in order fo obtain the best

fit to the training data. The back-propagation algorithm

[Rumelhart et al., 1986] is by far the most popular method

of optimising the connection weights and will be discussed

here. The back-propagation training process involves the

following basic steps:

1. The connection weights are assigned small, arbitrary
values.

2. A firaining sample is presenied to the network,
producing a network output.

3. The global error function is calculated:

1 2
E= -3 (o -0y (6)

E = global error fimction
oy = desired (historical) output
output predicted by network

[=]
i

4. The connection weights (w) are adiusted using the
gradient descent rule of optimisation:



2 JE
AWy = ¥ -n—— + pawl-1} (N
L

where

training sample presented to network
lgarning rate
momentum value

s
n
[
The number of training samples presented to the
network between weight updates is called the epoch size
().

1l

Steps 2 to 4 are repeated until certain stopping criteria are
met. For example, training may be stopped when a fixed
number of iraining samples besn presented to the
network or when there is no further improvement in the
forecasts obtained using an independent test set.

Ao
ave

The way the generalisation ability of a2 network, as
measured by the Root Mean Squared Error (RMSE)
between the predicted and historical values of an
independent test set, changes as training progresses is a
function of the size of the steps taken in weight space
(Figure 3). When small steps are taken, the RMSE
decreases siowly and steadily until a local minimum in the
error surface has been reached (point A, Figure 3).
Continued training results in small oscillations in RMSE,
as the network jumps from one side of a local minimum to
the other {recion A - B, Figure 3). When larger steps are
taken, the local minimum is reached more quickly {point C,
Figure 3), but continued training can resuit in large
oscillations in the RMSE, or even divergent behaviour
{region - D, Figure 3). Clearly, the former network
behaviour is more desirable, although very small step sizes
should be avoided, as they increase training time.

The way generzlisation ability changes as training
progresses is highly problem dependent. The absolute step
sizes that should be selected to achieve the desired network
behavicur needs to be determined for each case study. In
order to optimise model performance, it is vital to know at
what learn count 2 local minimum in the error surface is
reached and what the magnitude of the oscillations in the
forecasting error will be if training is continued.

This requires three data sets: a training set, a test set and a
validation set. The test sgt is used to cvaluale the
generalisation ability of the network at various learn counts
for a variety of step sizes. The validation set is used to
assess the performance of the model oncs the training phase
has been completed, For many applications, the daia
available are limited. In such cases, the amount of data
available for training should be maximised. This can be
achieved by conducting preliminary studies in which a
subset of the training daia is used to determine network
behaviour for a number of step sizes. The information
obtained from these irials can be used to select an
appropriate step size and how many training samples
should be presented to the network in the training phase.
Using this information, all of the training data can then be
used and a fixed number of training samples presented to
the network.
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Figure 3: Change in Generalisation Ability as Training
Progresses

The size of the steps taken in weight space during training
is a function of a number of internal network parameters
including the learning rate, momenfum value, error
function, epoch size and gain of the transfer function
Maier and Dandy, 1997d]. The same step size can be
achieved by using different combinations of the above
parameters. As discussed above, appropriate step sizes, and
hence appropriate combinations of network parameiers,
have to be determined by irial and error.

For both case studies, limited data were available and trials
were conducted using 2 subset of the training data [Maier
and Dandy, 1997h, 1997d]. As a result of these trials, a
learning rate of 0.02 was used for the salinity case study.
For the blue-green algae case study, the corresponding
value was 0.004. A momentum value of 0.6, an epoch size
of 16, the quadratic ervor function and the hyperbolic
tangent transfer function were used for both case studies.
The number of training samples presented to the network
was 100,000 in the salinity case study and 80,000 in the
blue-green algae case study.

3.5 Mipdel Validation

Once the training process has been completed, model
performance needs fo be validated using data that have not
been used in the training phase. For both case studies, the
latest available year of data was used for this purpose, thus
simulating a real-time forecasting situation. A plot of the
14 day forecast of salinity at Murray Bridge for 1991
obtained using the ANN model is shown in Figure 4.
Similarly, the four week forecast of concentrations of
Anabaena spp. at Morgan for 1992/93 are shown in Figure
5. The results obtained indicate that ANNs are a useful tool
for forecasting environmental variables.

4, CONCLUSIONS

Back-propagation neural networks have the potential to be

a useful tool for modelling environmental variables. In

order to optimise their performance, a systematic approach

needs {o be adopted in the model development phase. The

foliowing issues need to be given consideration:

1. Data transformation: Research carried out to date
indicates that there is no need to transform data which
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Figure 4 14 Day Forecast of Salinity at Murray Bridge
(1990

are not normally distributed and which exhibit non-
regular seasonal variation. However, the ability of
ANNs to deal with data containing trends and
heteroscedasticity has not yet been investigated.
The determination of appropriate model inputs: The
method of Haugh and Box [1977] and a neural network
based approach [Maier and Dandy, 1997c] have been
found to be suitable tools for determining appropriate
model inputs.
. The choice of an adeguate network geometry: The
relationship between the number of inputs and the
number of hidden nodes and the relationship betwesn
the latter and the number of available training samples
need to be examined using guidelines given in the
literature.
Network behaviour during the parameter estimation
phase: Trials need to be conducted to determine at what
fearn count a local minimum in the error surface is
reached, and what the oscillations in the RMS
forecasting error are with continued training, when
different step sizes are taken in weight space. This
assists with choosing appropriate network parameters
{e.g. learning rate, momentum, epoch size, error
function and transfer function) and how many training
samples to present to the network for a particular case
study.
. Model validation: Model performance should be
assessed using data that have not been used during
training.
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